A Diploid Population of Poa annua L. from Australia¹

In the course of genetic and environmental studies of populations of P. annua from New Guinea, mainland Australia and Macquarie Island, we found a population in the You Yangs State Forest Reserve, Victoria (45 miles south west of Melbourne), which deviates markedly from the others. The plants are strictly annual and grow only from May to late November (winter-spring). They have smaller leaves and panicles, fewer florets per spikelet and the seeds show a marked degree of dormancy. Cytological studies of this population show 2n = 14 chromosomes. The chromosomes invariably pair to give 7 normal bivalents at Metaphase I of meiosis (Figure).

Nannfeldt² proposed that P. annua (2n = 28) is an allotetraploid derived from a natural cross between Poa supina Schrad. and Poa infirma H.B.K. (P. exilis (Tomm.) Murb.), both of which are diploid (2n = 14). The karyotypes of these consist of one pair of long chromosomes (A), with a secondary constriction in the longer arm, known as the SAT chromosome; a shorter pair (B); a pair of medium length (C) and 4 pairs of small chromosomes. P. supina has slightly smaller chromosomes than P. infirma. Morphologically P. annua is intermediate between the 2 diploid species. If P. annua is an allotetraploid as proposed, it should possess 4A, 4B, 4C and 16 small chromosomes. However, the karyotypic studies by Koshy³ did not confirm Nannfeldt's hypothesis. In root tip mitoses only chromosomes I, II and XIV could be positively identified. No SAT chromosomes were found and there was no counterpart for the smallest chromosome (XIV) in either of the 2 diploids.

Both artificial hybrids P. annua \times infirma and P. annua \times supina show 21 chromosomes with 7 bivalents and 7 univalents at meiosis in pollen mother cells 4,5. Tutin 5 synthesized a tetraploid P. infirma \times supina in which the meiosis of the majority of pollen mother cells was normal, but in a few cases a single quadrivalent was observed. Therefore, a high degree of homology between the genome of P. annua and those of the putative parents would appear to exist.

Hovin ⁶ reported four 14-chromosome accessions of *P. annua* from California (USA). He considered them to be haploids derived from an amphidiploid species and called them 'amphihaploids'. Chromosome studies of

derived 14-chromosome form. It seems likely, therefore, that the 2 parent genomes have become homologous for long regions of chromosome during their long association in the genome of P. annua or, alternatively, P. annua did not arise as an allotetraploid, but is in fact an autotetraploid. In view of the fact that the chiasma frequency is quite high 6,7, the lack of quadrivalents in the 28chromosome form would seem to refute the latter hypothesis, unless there has been a mutation which controls bivalent formation, similar to the '5B system' of wheat 8,9. The You Yangs population may be morphologically similar to the 14-chromosome accessions of Hovin 6, but cytologically it differs in the increased number of bivalents per pollen mother cell. Hovin found that higher temperatures increased the number of bivalents, but this was interpreted to represent non-homologous chromosome associations. The regularity of bivalent formation in the You Yangs population implies homologous pairing. This population may have been introduced to Australia independently of the tetraploid or it may have arisen

between the parent genomes of P. annua.

On the available evidence it seems preferable to regard the You Yangs population as diploid rather than 'amphihaploid', at least until it can be established whether P. annua is an auto- or an allo-tetraploid. Further work on this population may help to solve the problem.

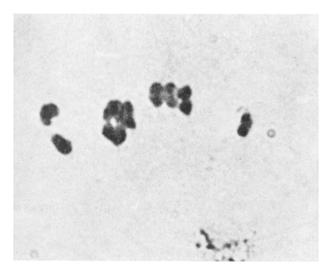
from existing tetraploid populations of P. annua in

pollen mother cells revealed no structural differences

between them, although there was variation in the extent of bivalent formation. The mean number of bivalents per

pollen mother cell for all accessions was less than 3. He

concluded that there was sufficient chromosome pairing to infer the presence of homologous chromosome segments


In the light of the putative origin of P. annua, since

the 28-chromosome form usually has 14 bivalents at meiosis, one would not expect to find 7 bivalents in a

Résumé. On décrit une population diploide de Poa annua L. d'Australie. Elle se montre différente des «amphihaploides» qui ont été trouvées en Californie. La signification de cette population en rapport avec l'origine supposée de P. annua est considerée.

W. M. Ellis, D. M. Calder and B. T. O. Lee

Botany School and Department of Genetics, University of Melbourne, Parkville 3052 (Victoria, Australia), 21 April 1970.

Meiosis in You Yangs Population, $\times 1000$.

- ² J. A. Nannfeldt, Bot. Notiser (1937), 238.
- ³ T. K. Koshy, Can. J. Genet. Cytol. 10, 112 (1968).
- ⁴ T. G. Tutin, Nature 169, 160 (1952).
- ⁵ T. G. Tutin, Watsonia 4, 1 (1957).
- 6 A. W. Hovin, Am. J. Bot. 45, 131 (1958).
- W. M. Ellis, unpublished.
- 8 E. R. SEARS and M. OKAMOTO, Proc. 10th Int. Congr. Genetics 2, 258 (1958).
- ⁹ R. RILEY, Heredity 15, 407 (1960).

Acknowledgment. This work was supported by a grant from the Nuffield Foundation.